Biological activity of heterocyclic systems based on functionally substituted 1,3,4-thia(oxa)diazoles (a review)

Keywords: 1,3,4-thiadiazoles, 1,3,4-oxadiazoles, biological activity

Abstract

1,3,4-Thiadiazole and oxadiazole hetetocycles are well-known pharmacophore scaffolds, which possess wide possibility for chemical modification and identified diverse pharmacological potential. Such essential and many-sided activities let to consider the mentioned heterocycles as ones of the crucial for expression of pharmacological activity, which confirm their importance for medicinal chemistry. Moreover, 1,3,4-oxadiazole cycle is a bioisostere for carboxylic, amide and ester groups, which mostly contribute to enhancement the pharmacological activity by participating in hydrogen bonding interactions with different enzymes and receptors.

The aim of the work was analysis of literature data about biological activity of non-condensed heterocyclic systems based on 1,3,4-thia(oxa)diazole rings as promising objects for modern bioorganic and medicinal chemistry.

In this study are presented the analysis of actual literature data about pharmacological activity of heterocyclic systems based on 1,3,4-thiadiazole. It has been established that mentioned scaffolds were identified as the main structural component of biological agents with antimicrobial, anti-inflammatory, analgetic, antitumor antitubercular and antiviral activity. Moreover, the combination of 1,3,4-thiadiazole or 1,3,4-oxadiazole core with various heterocycles led to synergistic effect in many cases. Thus, mentioned scaffolds are important heterocyclic fragments that are considered as promising structural matrices for the construction of new drug-likes molecules.

An analysis of the biological activity of 1,3,4-thia(oxa)diazole derivatives was carried out, which allowed to confirm their versatile pharmacological potential. Obtained data can be considered as background for further in-depth studies of chemical and pharmacological properties such heterocyclic systems with possible application in medicine.

References

1. Ahsan J. A., Choupra A., Sharma R. K., Jadav S. S., Padmaja P., Hassan M. Z. et al. Rationale design, synthesis, cytotoxicity evaluation, and molecular docking studies of 1,3,4-oxadiazole analogues // Anti-Cancer Agents Med. Chem. – 2018. – V. 18. – P. 121–138. https://doi.org/10.2174/1871520617666170419124702

2. Altintop M. D., Sever B., Özdemir A., Ilgin S., Atli Ö., Turan-Zitouni G. et al. Synthesis and evaluation of a series of 1,3,4-thiadiazole derivatives as potential anticancer agents // Ibid. – 2018. – V. 18. – P. 1606–1616. https://doi.org/10.2174/1871520618666180509111351

3. Madhu Sekhar M., Nagarjuna U., Padmavathi V., Padmaja A., Reddy N. V., Vijaya T. Synthesis and antimicrobial activity of pyrimidinyl 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles // Eur. J. Med. Chem. – 2018. – V. 145. – P. 1–10. https://doi.org/10.1016/j.ejmech.2017.12.067

4. Rohand T., Ramli Y., Baruah M., Budka J., Das A. M. Synthesis, structure elucidation and antimicrobial properties of new bis-1,3,4-oxadiazole derivatives // Pharm. Chem. J. – 2019. – V. 53, Iss 2. – P. 150–154. https://doi.org/10.1007/s11094-019-01969-2

5. Karabanovich G., Zemanova J., Smutny T., Szekely R., Sarkan M., Centarova I. et al. Development of 3,5-dinitrobenzylsulfanyl-1,3,4-oxadiazoles and thiadiazoles as selective antitubercular agents active against replicating and nonreplicating Mycobacterium tuberculosis // J. Med. Chem. – 2016. – V. 59, Iss. 6. – P. 2362–2380. https://doi.org/10.1021/acs.jmedchem.5b00608

6. Desai N. C., Somani H., Trivedi A., Bhatt K., Nawale L., Khedkar V. M. et al. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents // Bioorg. Med. Chem. Lett. – 2016. – V. 26. – P. 1776–1783. https://doi.org/10.1016/j.bmcl.2016.02.043

7. Gan X., Hu D., Chen Z., Wang Y., Song B. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates // Ibid. – 2017. – V. 27. – P. 4298–4301. https://doi.org/10.1016/j.bmcl.2017.08.038

8. Yu L., Gan X., Zhou D., He F., Zeng S., Hu D. Synthesis and antiviral activity of novel 1,4-pentadien-3-one derivatives containing a 1,3,4-thiadiazole moiety // Molecules. – 2017. – V. 22 (4). – P. 658. https://doi.org/10.3390/molecules22040658

9. Rajak H., Kharya M. D., Mishra P. Synthesis and local anesthetic activity of some novel N-[5-(4-substituted)phenyl-1,3,4-oxadiazol-2-yl]-2-(substituted)-acetamides // Arch. Pharm. Chem. Life Sci. – 2008. – V. 341. – P. 247–261. https://doi.org/10.1002/ardp.200700146

10. Guda D. R., Park S.-J., Lee M.-W. et al. Syntheses and anti-allergic activity of 2-((bis(trimethylsilyl)methylthio/methylsulfonyl)methyl)-5-aryl-1,3,4-oxadiazoles // Eur. J. Med. Chem. – 2013. – V. 62. – P. 84–88. https://doi.org/10.1016/j.ejmech.2012.12.035

11. Akhter M., Husain A., Azad B., Ajmal M. Aroylpropionic acid based 2,5-disubstituted-1,3,4-oxadiazoles: Synthesis and their anti-inflammatory and analgesic activities // Ibid. – 2009. – V. 44. – P. 2372–2378. https://doi.org/10.1016/j.ejmech.2008.09.005

12. Gomha S. M., Muhammad Z. A., Gaber H. M., Amin M. M. Synthesis of some novel heterocycles bearing thiadiazoles as potent anti-inflammatory and analgesic agents // J. Heterocycl. Chem. – 2017. – V. 54, Iss. 5. – P. 2708–2716. https://doi.org/10.1002/jhet.2872

13. Zhang Y.-B., Wang X.-L., Liu W., Yang Y.-S., Tang J.-F., Zhu H.-L. Design, synthesis and biological evaluation of heterocyclic azoles derivatives containing pyrazine moiety as potential telomerase inhibitors // Bioorg. Med. Chem. – 2012. – V. 20. – P. 6356–6365. https://doi.org/10.1016/j.bmc.2012.08.059

14. Rajak H., Agarawal A., Parmar P. et al. 2,5-Disubstituted-1,3,4-oxadiazoles/thiadiazole as surface recognition moiety: Design and synthesis of novel hydroxamic acid based histone deacetylase inhibitors // Bioorg. Med. Chem. Lett. – 2011. – V. 21. – P. 5735–5738. https://doi.org/10.1016/j.bmcl.2011.08.022

15. Zhang S., Luo Y., He L.-Q. et al. Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possesing benzotriazole moiety as FAK inhibitors with anticancer activity // Bioorg. Med. Chem. – 2013. – V. 21. – P. 3723–3729. https://doi.org/10.1016/j.bmc.2013.04.043

16. Kamal A., Dastagiri D., Ramaiah M. J. et al. Synthesis, anticancer activity and mitochondrial mediated apoptosis inducing ability of 2,5-diaryloxadiazole-pyrrolobenzodiazepine conjugates // Ibid. – 2010. – V. 18. – P. 6666–6677. https://doi.org/10.1016/j.bmc.2010.07.067

17. Kashtoh H., Hussain S., Khan A. et al. Oxadiazoles and thiadiazoles: Novel α-glucosidase inhibitors // Ibid. – 2014. – V. 22. – P. 5454–5465. https://doi.org/10.1016/j.bmc.2014.07.032

18. Palmer J. T., Hirschbein B. L., Cheung H. et al. Keto-1,3,4-oxadiazoles as cathepsin K inhibitors // Bioorg. Med. Chem. Lett. – 2006. – V. 16. – P. 2909–2914. https://doi.org/10.1016/j.bmcl.2006.03.001

19. Tantray M. A., Khan I., Hamid H. et al. Synthesis of benzimidazole-linked-1,3,4-oxadiazole carboxamides as GSK-3β inhibitors with in vivo antidepressant activity // Bioorg. Chem. – 2018. – V. 77. – P. 393–401. https://doi.org/10.1016/j.bioorg.2018.01.040

20. Khan K. M., Fatima N., Rasheed M. et al. 1,3,4-Oxadiazole-2(3H)-thione and its analogues: A new class of non-competitive nucleotide pyrophosphatases/phosphodiesterases 1 inhibitors // Bioorg. Med. Chem. – 2009. – V. 17. – P. 7816–7822. https://doi.org/10.1016/j.bmc.2009.09.011

21. Khan M. T. H., Choudhary M. I., Khan K. M. et al. Structure–activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues // Ibid. – 2005. – V. 13. – P. 3385–3395. https://doi.org/10.1016/j.bmc.2005.03.012

22. Abbasi M. A., Hassan M., Aziz-ur-Rehman et al. Synthesis, in vitro and in silico studies of novel potent urease inhibitors: N-[4-({5-[(3-Un/substituted-anilino-3-oxopropyl)-sulfanyl]-1,3,4-oxadiazol-2-yl}methyl)-1,3-thiazol-2-yl]benzamides // Ibid. – 2018. – V. 26. – P. 3791–3804. https://doi.org/10.1016/j.bmc.2018.06.005

23. Puthiyapurayil P., Poojary B., Chikkanna C., Buridipad S. K. Design, synthesis and biological evaluation of a novel series of 1,3,4-oxadiazole bearing N-methyl-4-(trifluoromethyl)phenyl pyrazole moiety as cytotoxic agents // Eur. J. Med. Chem. – 2012. – V. 53. – P. 203–210. https://doi.org/10.1016/j.ejmech.2012.03.056

24. Kotaiah Y., Harikrishna N., Nagaraju K., Rao C. V. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives // Ibid. – 2012. – V. 58. – P. 340–345. https://doi.org/10.1016/j.ejmech.2012.10.007

25. Luo Z., Chen B., He S. et al. Synthesis and antitumor-evaluation of 1,3,4-thiadiazole-containing benzisoselenazolone derivatives // Bioorg. Med. Chem. Lett. – 2012. – V. 22, Iss. 9. – P. 3191–3193. https://doi.org/10.1016/j.bmcl.2012.03.043

26. Padmavathi V., Reddy G. D., Reddy S. N., Malesh K. Synthesis and biological activity of 2-(bis((1,3,4-oxadiazolyl/1,3,4-thiadiazolyl)methylthio)-methylene)malononitriles // Eur. J. Med. Chem. – 2011. – V. 46, Iss. 4. – P. 1367–1373. https://doi.org/10.1016/j.ejmech.2011.01.063

27. Guimarães C. R. W., Boger D. L., Jorgensen W. L. Elucidation of fatty acid amide hydrolase inhibition by potent α-ketoheterocycle derivatives from Monte Carlo simulations // J. Am. Chem. Soc. – 2005. – V. 127, N 49. – P. 17377–17384. https://doi.org/10.1021/ja055438j

28. Bansal S., Bala M., Suthar S. K. et al. Design and synthesis of novel 2-phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as selective COX-2 inhibitors with potent anti-inflammatory activity // Eur. J. Med. Chem. – 2014. – V. 80. – P. 167–174. https://doi.org/10.1016/j.ejmech.2014.04.045

29. Bala S., Kamboj S., Saini V., Prasad D. N. Anti-inflammatory, analgesic evaluation and molecular docking studies of N-phenyl anthranilic acid-based 1,3,4-oxadiazole analogues // J. Chem. [Electronic resource]. – Mode of access: https://www.hindawi.com/journals/jchem/2013/412053/, Article ID 412053, 6 pages. https://doi.org/10.1155/2013/412053

30. Husain A., Ajmal M. Synthesis of novel 1,3,4-oxadiazole derivatives and their biological properties // Acta Pharm. – 2009. – V. 59. – P. 223–233. https://doi.org/10.2478/v10007-009-0011-1

31. Şahin G., Palaska E., Ekizoğlu M., Özalp M. Synthesis and antimicrobial activity of some 1,3,4-oxadiazole derivatives // Il Farmaco. – 2002. – V. 57. – P. 539–542. https://doi.org/10.1016/S0014-827X(02)01245-4

32. Jha K. K., Samad A., Kumar Y. et al. Design, synthesis and biological evaluation of 1,3,4-oxadiazole derivatives // Eur. J. Med. Chem. – 2010. – V. 45, Iss. 11. – P. 4963–4967. https://doi.org/10.1016/j.ejmech.2010.08.003

33. Macaev F., Rusu G., Pogrebnoi S. et al. Synthesis of novel 5-aryl-2-thio-1,3,4-oxadiazoles and the study of their structure–anti-mycobacterial activities // Bioorg. Med. Chem. – 2005. – V. 13, Iss. 16. – P. 4842–4850. https://doi.org/10.1016/j.bmc.2005.05.011

34. Barbuceanu S.-F., Saramet G., Almajan G. L. et al. New heterocyclic compounds from 1,2,4-triazole and 1,3,4-thiadiazole class bearing diphenylsulfone moieties. Synthesis, characteriazation and antimicrobial activity evaluation // Eur. J. Med. Chem. – 2012. – V. 49. – P. 417–423. https://doi.org/10.1016/j.ejmech.2012.01.031

35. Luo Y., Zhang S., Liu Z.-J. et al. Synthesis and antimicrobial evaluation of a novel class of 1,3,4-thiadiazole: Derivarives bearing 1,2,4-triazolo[1,5-a]pyrimidine moiety // Ibid. – 2013. – V. 64. – P. 54–61. https://doi.org/10.1016/j.ejmech.2013.04.014

36. Polkam N., Rayam P., Anireddy J. S. et al. Synthesis, in vitro anticancer and antimycobacterial evaluation of new 5-(2,5-dimethoxyphenyl)-1,3,4-thiadiazole-2-amino derivatives // Bioorg. Med. Chem. Lett. – 2015. – V. 25, Iss. 7. – P. 1398–1402. https://doi.org/10.1016/j.bmcl.2015.02.052

37. Wu W.-N., Tai A.-Q., Chen Q., Ouyang, G.-P. Synthesis and antiviral bioactivity of novel 2-substituted methylthio-5-(4-amino-2-methylpyrimidin-5-yl)-1,3,4-thiadiazole derivatives // J. Heterocycl. Chem. – 2016. – V. 53, Iss. 2. – P. 626–632. https://doi.org/10.1002/jhet.2435

38. Wu W., Chen Q., Tai A. et al. Synthesis and antiviral activity of 2-substituted methylthio-5-(4-amino-2-methylpyrimidin-5-yl)-1,3,4-oxadiazole derivatives // Bioorg. Med. Chem. Lett. – 2015. – V. 25, Iss. 10. – P. 2243–2246. https://doi.org/10.1016/j.bmcl.2015.02.069

39. Hajimahdi Z., Zarghi A., Zabihollahi R., Aghasadeghi M. R. Synthesis, biological evaluation and molecular modeling studies of new 1,3,4-oxadiazole- and 1,3,4-thiadiazole-substituted 4-oxo-4H-pyrido[1,2-a]pyrimidines as anti-HIV-1 agents // Med. Chem. Res. – 2013. – V. 22, Iss. 5. – P. 2467–2475. https://doi.org/10.1007/s00044-012-0241-5

40. Johns B. A., Weatherhead J. G., Allen S. H. et al. The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1: Establishing the pharmacophore // Bioorg. Med. Chem. Lett. – 2009. – V. 19, Iss. 6. – P. 1802–1806. https://doi.org/10.1016/j.bmcl.2009.01.090

41. Johns B. A., Weatherhead J. G., Allen S. H. et al. 1,3,4-Oxadiazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 2: SAR of the C5 position // Ibid. – 2009. – V. 19, Iss. 6. – P. 1807–1810. https://doi.org/10.1016/j.bmcl.2009.01.089

42. Ravichandran V., Shalini S., Sundram K., Sokkalingam A. D. QSAR study of substituted 1,3,4-oxadiazole naphthyridines as HIV-1 integrase inhibitors // Eur. J. Med. Chem. – 2010. – V. 45, Iss. 7. – P. 2791–2797. https://doi.org/10.1016/j.ejmech.2010.02.062

43. Hamad N. S., Al-Haidery N. H., Al-Masoudi I. A. et al. Amino acid derivatives, Part 4: Synthesis and anti-HIV activity of new naphthalene derivatives // Arch. Pharm. Chem. Life Sci. – 2010. – V. 343, Iss. 7. – P. 397–403. https://doi.org/10.1002/ardp.200900293

44. Aboraia A. S., Abdel-Rahman H. M., Manfouz N. M., El-Gendy M. A. Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: Promising anticancer agents // Bioorg. Med. Chem. – 2006. – V. 14, Iss. 4. – P. 1236–1246. https://doi.org/10.1016/j.bmc.2005.09.053

45. Gurupadaswamy H. D., Girish V., Kavitha C. V. et al. Synthesis and evaluation of 2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazole as anticancer agents // Eur. J. Med. Chem. – 2013. – V. 63. – P. 536–543. https://doi.org/10.1016/j.ejmech.2013.02.040

46. Zhang X.-M., Qiu M., Sun J. et al. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents // Bioorg. Med. Chem. – 2011. – V. 19, Iss. 21. – P. 6518–6524. https://doi.org/10.1016/j.bmc.2011.08.013

47. Lokanatha Rai K. M., Linganna N. Synthesis and evaluation of antimitotic activity of alkylated 2-amino-1,3,4-oxadiazole derivatives // Il Farmaco. – 2000. – V. 55, Iss. 5. – P. 389–392. https://doi.org/10.1016/S0014-827X(00)00056-2

48. Shen L.-H., Li H.-Y., Shang H.-X. et al. Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties // Chin. Chem. Lett. – 2013. – V. 24, Iss. 4. – P. 299–302. https://doi.org/10.1016/j.cclet.2013.01.052

49. Zhao H.-C., Shi Y.-P., Liu Y.-M. et al. Synthesis and antitumor-evaluation of 1,3-selenazole-containing 1,3,4-thiadiazole derivatives // Bioorg. Med. Chem. Lett. – 2013. – V. 23, Iss. 24. – P. 6577–6579. https://doi.org/10.1016/j.bmcl.2013.10.062

50. Mavrova A. Ts., Wesselinova D., Tsenov J. A., Lubenov L. A. Synthesis and antiproliferative activity of some new thieno[2,3-d]pyrimidin-4(3H)-ones containing 1,2,4-triazole and 1,3,4-thiadiazole moiety // Eur. J. Med. Chem. – 2014. – V. 86. – P. 676–683. https://doi.org/10.1016/j.ejmech.2014.09.032

51. Lee J., Lee S.-H., Seo H. J. et al. Novel C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents: 1,3,4-thiadiazolylmethylphenyl glucoside congeners // Bioorg. Med. Chem. – 2010. – V. 18, Iss. 6. – P. 2178–2194. https://doi.org/10.1016/j.bmc.2010.01.073

52. Taha M., Ismail N. H., Jamil W. et al. Synthesis of 2-(2-methoxyphenyl)-5-phenyl-1,3,4-oxadiazole derivatives and evaluation of their antiglycation potential // Med. Chem. Res. – 2016. – V. 25, Iss. 2. – P. 225–234. https://doi.org/10.1007/s00044-015-1476-8

53. Cressier D., Prouillac C., Hernandez P. et al. Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles // Bioorg. Med. Chem. – 2009. – V. 17, Iss. 14. – P. 5275–5284. https://doi.org/10.1016/j.bmc.2009.05.039

54. Patrao P., Khader A. M. A., Kalluraya B., Vinayachandra. Synthesis of new 5-naphthyl substituted 1,3,4-oxadiazole derivatives and their antioxidant activity // Der Pharma Chemica. – 2013. – V. 5, N 2. – P. 24–32.

55. Rajak H., Thakur B. S., Singh A. et al. Novel limonene and citral based 2,5-disubstituted-1,3,4-oxadiazoles: a natural product coupled approach to semicarbazones for antiepileptic activity // Bioorg. Med. Chem. Lett. – 2013. – V. 23, Iss. 3. – P. 864–868. https://doi.org/10.1016/j.bmcl.2012.11.051

56. Kumudha D., Reddy R. R., Kalavathi T. Synthesis and evaluation of some 1,3,4-thiadiazoles having substituted 1,2,4-triazole moiety for anticonvulsant and CNS depressant activity // World J. Pharm. Pharm. Sci. – 2014. – V. 3, Iss. 9. – P. 728–740.

57. Jiang L.-L., Tan Y., Zhu X.-L. et al. Design, synthesis and 3D-QSAR analysis of novel 1,3,4-oxadiazol-2(3H)ones as protoporphyrinogen oxidase inhibitors // J. Agric. Food Chem. – 2010. – V. 58, N 5. – P. 2643–2651. https://doi.org/10.1021/jf9026298

58. Zuo Y., Yang S.-G., Jiang L.-L. et al. Quantitative structure-activity relationships of 1,3,4-thiadiazol-2(3H)ones and 1,3,4-oxadiazol-2(3H)ones as human protoporphyrinogen oxidase inhibitors // Bioorg. Med. Chem. – 2012. – V. 20, Iss. 1. – P. 296–304. https://doi.org/10.1016/j.bmc.2011.10.079

59. Tully W. R., Gardner C. R., Gillespie R. J., Westwood R. 2-(Oxadiazolyl)- and 2-(thiazolyl)imidazo[1,2-a]pyrimidines as agonists and inverse agonists at benzodiazepine receptors // J. Med. Chem. – 1991. – V. 34, N 7. – P. 2060–2067. https://doi.org/10.1021/jm00111a021

60. Jung K.-Y., Kim S.-K., Gao Z.-G. et al. Structure-activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists // Bioorg. Med. Chem. – 2004. – V. 12, Iss. 3. – P. 613–623. https://doi.org/10.1016/j.bmc.2003.10.041

61. Vergne F., Bernardelli P., Lorthiois E. et al. Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 1: Design, synthesis and structure-activity relationship studies // Bioorg. Med. Chem. Lett. – 2004. – V. 14, Iss. 18. – P. 4607–4613. https://doi.org/10.1016/j.bmcl.2004.07.008

62. Khan I., Ali S., Hamed S. et al. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives // Eur. J. Med. Chem. – 2010. – V. 45, Iss. 11. – P. 5200–5207. https://doi.org/10.1016/j.ejmech.2010.08.034

63. Sun J., Cao N., Zhang X.-M. et al. Oxadiazole derivatives containing 1,4-benzodioxan as potential immunosuppressive agents against RAW246.7 cells // Bioorg. Med. Chem. – 2011. – V. 19, Iss. 16. – P. 4895–4902. https://doi.org/10.1016/j.bmc.2011.06.061

64. Monte F. L., Kramer T., Gu J. et al. Structure-based optimization of oxadiazole-based GSK-3 inhibitors // Eur. J. Med. Chem. – 2013. – V. 61. – P. 26–40. https://doi.org/10.1016/j.ejmech.2012.06.006
Published
2019-12-21
How to Cite
Lelyukh, M. I. (2019). Biological activity of heterocyclic systems based on functionally substituted 1,3,4-thia(oxa)diazoles (a review). Farmatsevtychnyi Zhurnal, (6), 43-53. https://doi.org/10.32352/10.32352/0367-3057.6.19.05
Section
Synthesis and analysis of biologically active compounds