Anti-inflammatory properties of the extract of maruna virgin (Tanacetum parthenium L.) on the model of chronic inflammation modeled by the Freund’ adjuvant in rats

Keywords: chronic inflammation, experimental adjuvant arthritis, anti-inflammatory action, thick extract of feverfew (Tanacetum parthenium L.) herb

Abstract

Еhe aim of the study was to investigate the effectiveness of a thick extract of feverfew (Tanacetum parthenium L.) herb in chronic inflammation (adjuvant arthritis) in rats.

The anti-inflammatory properties of the water-alcohol thick extract of feverfew (Tanacetum parthenium L.) herb (ETP) were studied in the model of adjuvant arthritis (ADA) (0.1 ml of Freund's adjuvant (PAF), once subcutaneously at the base of the tail of white nonlinear male rats (body weight 200–220 g). After 7 days, the introduction of PAF was repeated (subcutaneously in the right hind paw of rats). The animals were divided into 4 groups of 9 rats each, in the intact group – 6 animals. Distilled water (1 ml/100 g) was administered to positive control animals (PCs) on the background of pathology. An aqueous solution of ETP (50 mg/kg) and diclofenac sodium (1% starch suspension, 8 mg/kg) were administered from day 1 of the experiment and for four weeks daily intragastrically once daily. The volume of the affected foot (V) was measured using a LE7500 plethysmometer (PANLAB, Italy) in dynamics – at 1, 5, 10, 15, 20, 25 and 30 days after administration of a permissive dose of PAF. The intensity of inflammation in rats was assessed by peripheral blood parameters, biochemical indicators - markers of the inflammatory process. Statistical analysis of data was performed using the standard software package «Statistica v. 6.0». Differences between groups were considered statistically significant at p <0.05.

The course of ADA was characterized by the development of systemic inflammation, as evidenced by an increase in the number of leukocytes, increased erythrocyte sedimentation rate (ESR) and the content of C-reactive protein (CRP). A statistically significant increase in the level of LF and sialic acids indicates membrane-destructive processes in connective tissue. Against the background of ETP significantly decreased the level of the main indicator of inflammation CRP 2 times, the content of markers of destruction of joint tissue  – sialic acid and LF decreased by 1.9 times relative to PC animals, indicating a positive effect on local and systemic manifestations of inflammation in ADA. The effectiveness of ETP was not inferior to diclofenac sodium (DS).

Based on the data obtained, it can be concluded that the studied ETP at a dose of 50 mg/kg in the ADA model in rats has a pronounced anti-inflammatory effect and is not inferior to diclofenac sodium, which makes it promising further research as an effective anti-inflammatory agent.

References

Safiri S., Kolahi A. A., Hoy D. et al. Global, regional and national burden of rheumatoid arthritis 1990–2017: A systematic analysis of the global burden of disease study 2017 // Ann. Rheum. Dis. – 2019. – V. 78. – P. 1463–1471. https://doi.org/10.1136/annrheumdis-2019-215920

Almutairi K., Nossent J., Preen D. et al. The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review // Rheumatol. Int. – 2021. – V. 41, N 5. – P. 863‒877. https://doi.org/10.1007/s00296-020-04731-0

Smolen J. S., Aletaha D., McInnes I. B. Rheumatoid arthritis // Lancet. – 2016. – V. 388. – P. 2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8

Zou S. R. Five Balances in the Management of Rheumatoid Arthritis // J. Biosci. Med. – 2017. – V. 5. – P. 10‒21. https://doi.org/10.4236/jbm.2017.59002

Catrina A. I., Svensson C. I., Malmstrom V. et al. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis // Nature Rev. Rheumatol. – 2017. – V. 13. – P. 79‒86. https://doi.org/10.1038/nrrheum.2016.200

Firestein G. S., McInnes I. B. Immunopathogenesis of rheumatoid arthritis // Immunity. – 2017. – V. 46, N 2. – P. 183‒196. https://doi.org/10.1016/j.immuni.2017.02.006

Radu A.-F., Bungau S. G. Management of rheumatoid arthritis: An overview // Cells. – 2021. – V. 10. – P. 28‒57. https://doi.org/10.3390/cells10112857

Smolen J. S., Landewé R. B. M., Bijlsma J. W. J. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update // Ann. Rheum. Dis. – 2020. – V. 79. – P. 685–699. https://doi.org/10.1136/annrheumdis-2019-216655

Hajja G., Bahlouli A. Medicinal plants in the prevention and treatment of rheumatoid arthritis // MOJ Bioequiv. Availab. – 2018. – V. 5, N 1. – P. 60‒64. https://doi.org/10.15406/mojbb.2018.05.00084

Pareek A., Suthar M., Rathore G. S., Bansal V. Feverfew (Tanacetum parthenium L.): A systematic review // Pharmacognosy Rev. – 2011. – V. 5, N 9. – P. 103–110. https://doi.org/10.4103/0973-7847.79105

Liapunov M., Bezuhla O., Pidpruzhnykov Yu. ta in. ST-N MOZU Nastanova 42-3.0: 2011. «Likarski zasoby. Farmatsevtychna rozrobka (ICHQ8)» / Vydannia ofitsiine. – Kyiv: MOZ Ukrainy, 2011. – 42 s. Available at: https://compendium.com.ua/uk/clinical-guidelines-uk/standartizatsiya-farmatsevtichnoyi-produktsiyi-tom-1/st-n-mozu-42-3-0-2011/

Serra C. I., Soler C. Animal models of osteoarthritis in small mammals // Vet. Clin. Exot. Anim. – 2019. – V. 22. ‒ P. 211–221. https://doi.org/10.1016/j.cvex.2019.01.004

Choudhary N., Bhatt L. K., Prabhavalkar K. S. Experimental animal models for rheumatoid arthritis // Immunopharmacology and immunotoxicology. – 2018. – V. 40, N 3. – P. 193‒200. https://doi.org/10.1080/08923973.2018.1434793

Gontova T. M., Kotova E. E., Kyrychenko I. V. ta in. Perspektyvy kompleksnoho vykorystannia travy maruny divochoi dlia stvorennia ekstraktiv z analhetychnoiu ta protyzapalnoiu diieiu. Suchasna farmatsiia: istoriia, realii ta perspektyvy rozvytku: Mat. naukovo-prakt. konf. z mizhnar. uchastiu, prysviachenoi 20-y richnytsi zasnuvannia Dnia farmatsevtychnoho pratsivnyka Ukrainy, m. Kharkiv, 19–20 veresnia 2019 r.,u 2 t. / Red. A. A. Kotvitska ta in. – Kharkiv: NFaU, 2019. – T. 1. – S. 279–280.

Gontova T. M., Hordiei K. R., Mishchenko O. Ya. ta in. Zasib z protyzapalnoiu diieiu: Pat. 140385 Ukrainy № u 2019 07427; Zaiavl. 04. 07. 2019; Opubl. 25. 02. 2020, Biul. № 4.

Hordiei K., Gontova T., Kotova E. et al. Research on the chemical composition and standartisation of the feverfew thick extract. «Sciences and Practice», 10th International Pharmaceutical Conference November 15, 2019 – Kaunas, Lithuania, 2019. – P. 32. http://dspace.nuph.edu.ua/handle/123456789/21548

Mishchenko O. Ya., Kotvitska A. A. Farmakolohichna efektyvnist emulsii analbenu na modeli adiuvantnoho artrytu u shchuriv // Visn. farmatsii. – 2001. – T. 3. – S. 124–125.

Zupanets I. A., Moskalenko V. F., Misiurova S. V. ta in. Klinichni laboratorni metody doslidzhennia: navch. posib. – Kharkiv: Vyd-vo NFAU Zoloti storinky, 2001. – 178 s.

Kamishnykov V. S. Spravochnyk po klynyko-byokhymycheskoi laboratornoi dyahnostyke. ‒ Mynsk: Belarus, 2000. – Ch. 1. – 495 s.

Nasuti C., Fedeli D., Bordoni L. Anti-inflammatory, anti-arthritic and anti-nociceptive activities of nigella sativa oil in a rat model of arthritis // Antioxidants. – 2019. – V. 8. – P. 342. https:// doi:10.3390/antiox8090342

Kwok B. H., Koh B., Ndubuisi M. I. et al. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase // Chem. Biol. – 2001. – V. 8. – P. 759‒766. https://doi.org/10.1016/s1074-5521(01)00049-7

Published
2022-06-29
How to Cite
Kyrychenko, I. V., & Mischenko, O. Y. (2022). Anti-inflammatory properties of the extract of maruna virgin (Tanacetum parthenium L.) on the model of chronic inflammation modeled by the Freund’ adjuvant in rats. Farmatsevtychnyi Zhurnal, (3), 103-112. https://doi.org/10.32352/0367-3057.3.22.12
Section
General and Clinical Pharmacology