Modern approaches to studying the antimicrobial and antifungal activities of new 1,2,4-triazole derivatives

Keywords: organic compounds, 1,2,4-triazole, derivatives, antimicrobial activity, antifungal activity

Abstract

1,2,4-Triazole and its derivatives are a promising class of organic compounds. For a long time, they remain in the spotlight due to a number of unique properties: high ability to chemical transformations, the presence of various types of biological activity and, of course, low toxicity. Also, a number of 1,2,4-triazole derivatives are currently well studied and implemented in various spheres of human life as effective drugs, various plant protection products (growth stimulants, fungicides, herbicides), anti-corrosion materials, plasticizers, etc.

The aim of the work was to analyze and systematize new data on antimicrobial and antifungal activity of 1,2,4-triazole derivatives and to select a promising area of ​​research based on the accumulation of a large amount of information on the properties of new 1,2,4-triazole derivatives.

The analysis of modern sources of information in recent years argues and proves the prospects for finding new biologically active compounds in a number of 1,2,4-triazole derivatives. The information obtained clearly indicates the possibility of using 1,2,4-triazoles, which contain a Sulfur atom, as objects of study.

1,2,4-Triazole is one of the most well-known classes of biologically active compounds, which has a wide range of biological action. Derivatives of 1,2,4-triazole are characterized by the presence of antibacterial, antifungal, hypoglycemic, antihypertensive, analgesic, anti-inflammatory, antitumor, antiviral activities. The trend of creating new effective drugs based on 1,2,4-triazole derivatives is growing.

Some of the drugs are 1,2,4-triazole derivatives: ribavirin (an antiviral agent), risatriptan (a selective 5HT1 serotonin receptor agonist), alprazolam (an anxiolytic agent), fluconazole, and itraconazole (antifungal drugs). Derivatives of this compound have proven themselves well in veterinary medicine. Drugs such as Avesstim, Trifuzol, Trifuzol-neo are immunostimulants and in various dosage forms (1%, 2% solutions, suppositories) are used in veterinary farms, in the private livestock sector and for pets.

These facts are the best example for understanding the prospects of finding new molecules among 1,2,4-triazole derivatives.

References

Ezabadi I. R., Camoutsis C., Zoumpoulakis P. et al. Sulfonamide-1,2,4-triazole derivatives as antifungaland antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies // Bioorg. Med. Chem. – 2008. – V. 16, N 3. – Р. 1150–1161. https://doi.org/10.1016/j.bmc.2007.10.082

Xu J., Cao Y., Zhang J. et al. Design, synthesis and antifungal activities of novel 1,2,4-triazole derivatives // Eur. J. Med. Chem. – 2011. – N 46. – Р. 3142–3148. https://doi.org/10.1016/j.ejmech.2011.02.042

Guzeldemirci N., Kucukbasmac O. Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo[2,1-b] thiazole moiety // Eur. J. Med. Chem. – 2010. – N 45. – Р. 63–68. https://doi.org/10.1016/j.ejmech.2009.09.024

Chai X., Xu J., Cao Y. et al. Design, synthesis, and biological evaluation of novel 1-(1H1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-substituted benzylamino-2-propanols // Bioorg. Med. Chem. Lett. – 2009. – N 19. – Р. 1811–1814. https://doi.org/10.1016/j.bmcl.2009.01.048

Aggarwal N., Kumar R., Dureja P., Khurana J. M. Synthesis, antimicrobial evaluation and QSAR analysis of novel nalidixic acid based 1,2,4-triazole derivatives // Eur. J. Med. Chem. – 2011. – V. 46, N 9. – Р. 4089–4099. https://doi.org/10.1016/j.ejmech.2011.06.009

Eswaran S., Vasudeva А., Shetty S. N. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety // Eur. J. Med. Chem. – 2009. – N 44. – P. 4637–4647. https://doi.org/10.1016/j.ejmech.2009.06.031

Bigdan O. A., Parchenko V. V., Kyrychko B. P. et al. Test of antimicrobial activity of morpholine 2-(5-(3-fluorophenyl)-4-amino-1,2,4-triazol-3-ilthio)acetate (BKP-115) by experimental model of pancreatitis in rats // Ukr. J. Ecology. – 2020. – V. 10, N 3. – P. 201–207. https://doi.org/10.15421/2020_155

Demirayaka S., Benklia K., Guvenb K. Synthesis and antimicrobial activitiesof some 3-arylamino-5-[2-(substituted-1-imidazolyl)ethyl]-1,2,4-triazole derivatives // Eur. J. Med. Chem. – 2000. – N 35. – Р. 1037–1040. https://doi.org/10.1016/s0223-5234(00)01178-8

Mange Y. J., Isloor A. M., Malladi S., Isloor S. Synthesis and antimicrobial activities of some novel 1,2,4-triazolederivatives // Arabian J. Chem. – 2013. – V. 6, N 2. – P. 177–181. https://doi.org/10.1016/j.arabjc.2011.01.033

Nasser S. A., Khalil M. Efficient synthesis, structure, and antimicrobialactivity of some novel N- and S-b-Dglucosides of 5-pyridin-3-yl-1,2,4-triazoles // Carbohydrate Res. – 2006. – N 341. – Р. 2187–2199. https://doi.org/10.1016/j.carres.2006.06.007

Sztanke K., Tuzimski T., Rzymowska J. et al. Synthesis, determination of thelipophilicity, anticancerandantimicrobial properties of somefused 1,2,4-triazole derivatives // Bioorg. Med. Chem. – 2006. – N 14. – Р. 3635–3642. https://doi.org/10.1016/j.ejmech.2007.03.033

He Q. Q., Liu C. M., Li K., Cao Y. B. Design, synthesis of novel antifungaltriazole derivatives with high activitiesagainst Aspergillus fumigates // Chin. Chem. Lett. – 2007. – N 18. – Р. 421–423. https://doi.org/10.1016/j.cclet.2007.02.011

Chai X., Zhang J., Cao Y. et al. Design, synthesis, and biologicalevaluation of novel 1-(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-substituted benzylamino-2-propanols // Bioorg. Med. Chem. Lett. – 2009. – V. 19, N 6. – Р. 1811–1814. https://doi.org/10.1016/j.bmcl.2009.01.048

Bayrak H., Demirbas A., Demirbas N., Karaoglu S. A. Synthesis of some new1,2,4-triazoles starting fromisonicotinic acid hydrazide andevaluation of their antimicrobialactivities // Eur. J. Med. Chem. – 2009. – N 44. – P. 4362–4366. https://doi.org/10.1016/j.ejmech.2009.05.022

Saadeh H. A., Mosleh I.M., Al-Bakri A. G.., Mubarak M. S. Synthesis andantimicrobial activity of new 1,2,4-triazole-3-thiol metronidazolederivatives // Monatsh Chem. – 2010. – N 141. – Р. 471–478. https://doi.org/10.1007/s00706-010-0281-9

Kaplancikli Z. A., Turan-Zitouni G.., Ozdemir A., Revial G. New triazoleand triazolothiadiazine derivatives aspossible antimicrobial agents // Eur. J. Med. Chem. – 2008. – N 43. – P. 155–159. https://doi.org/10.1016/j.ejmech.2007.03.019

Kudari S. M., Mathapti V. V., Lagali K. V. Synthesis and antimicrobialactivity of some heterocycles // Indian J. Heterocyclic Chem. – 1996. – N 5. – P. 203. https://doi.org/10.1016/j.ejmech.2007.12.009

Shingare M. S., Tore S. N., Mane D. V. et al. Synthesis ofdihydro-pyridinotriazoles // Indian J. Heterocyclic Chem. – 1995. – N 5. – P. 161. https://doi.org/10.20546/ijcrar.2016.402.031

Shaojie Wu, Wenhui Zhang, Le Qi et al. Investigation on 4-amino-5-substituent-1,2,4-triazole-3-thione Schiff bases an antifungal drug by characterization (spectroscopic, XRD), biological activities, molecular docking studies and electrostatic potential (ESP) // J. Molecular Structure. – 2019. – Р. 171–182. https://doi.org/10.1016/j.molstruc.2019.07.013

Merve Gokalp, Bülent Dede, Tahir Tilki, Çigdem Karabacak Atay. Triazole based azo molecules as potential antibacterial agents: Synthesis, characterization, DFT, ADME and molecular docking studies // J. Molecular Structure. – 2020. – V 1212, N 15. – P. 128–140. https://doi.org/10.1016/j.molstruc.2020.128140

Vineetha Telma D’Souza, Janardhana Nayak, Desmond Edward D’Melloc. Synthesis and characterization of biologically important quinoline incorporated triazole derivatives // J. Molecular Structure. – 2020. – V. 1212, N 15. – Р. 128140. https://doi.org/10.1016/j.molstruc.2020.129503

Amin N. H., El-Saadi M. T., Ibrahim A. A., Abdel-Rahman H. M. Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents // Bioorg. Chem. – 2021. – V. 111. – Р. 104841. https://doi.org/10.1016/j.bioorg.2021.104841

Beyzaei H., Kudeyani M. G., Delarami H. S., Aryan R. Synthesis, antimicrobial and antioxidant evaluation, and molecular docking study of 4,5-disubstituted 1,2,4-triazole-3-thiones // J. Molecular Structure. – 2020. – V. 1215, N 5. – Р. 128273. https://doi.org/10.1016/j.molstruc.2020.128273

Sampath Bitla, Akkiraju Anjini Gayatri, Muralidhar Reddy Puchakayala. Design and synthesis, biological evaluation of bis-(1,2,3- and 1,2,4)-triazole derivatives as potential antimicrobial and antifungal agents // Bioorg. Med. Chem. Lett. – 2021. – V. 41, N 1. – Р. 128004. https://doi.org/10.1016/j.bmcl.2021.128004

Blokhina S. V., Sharapova A. V., Ol’khovich M. V. Synthesis and antifungal activity of new hybrids thiazolo[4,5-d]pyrimidines with (1H-1,2,4)triazole // Bioorg. Med. Chem. Lett. – 2021. – V. 40, N 15. – Р. 127944. https://doi.org/10.1016/j.bmcl.2021.127944

Mei Chen, Yihui Wang, Shijun Su, Ying Chen. Synthesis and biological evaluation of 1,4-pentadien-3-one derivatives containing 1,2,4-triazole // J. Saudi Chemical Society. – 2020. – V. 24, N 10. – P. 765–776. https://doi.org/10.1016/j.jscs.2020.08.005

Dewangan D., Vaishnav Y., Mishra A. Synthesis, molecular docking, and biological evaluation of Schiff base hybrids of 1,2,4-triazole-pyridine as dihydrofolate reductase inhibitors // Current Res. Pharmacol. Drug Discovery. – 2021. – V. 2. – Р. 100024. https://doi.org/10.1016/j.crphar.2021.100024

Feng Gao, Tengfei Wang, Jiaqi Xiao. Antibacterial activity study of 1,2,4-triazole derivatives// Eur. J. Med. Chem. – 2019. – V. 173, N 1. – P. 274–281. https://doi.org/10.1016/j.ejmech.2019.04.043

Gavara L., Sevaille L., De Luca F. 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-blactamase inhibitors // Eur. J. Med. Chem. – 2020. – V. 208, N 15. – Р. 112720. https://doi.org/10.1016/j.ejmech.2020.112720

Gavara L., Legru A., Verdirosa F. 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors // Bioorg. Chem. – 2021. – V. 113. – Р. 105024. https://doi.org/10.1016/j.bioorg.2021.105024

Md. Mahadi Hasan, Habib Md. Ahsan, Prianka Saha. Antioxidant, antibacterial and electrochemical activity of (E)-N-(4 (dimethylamino) benzylidene)-4H-1,2,4-triazol-4-amine ligand and its transition metal complexes // Results in Chemistry. – 2021. – V. 3. – R. 100115. https://doi.org/10.1016/j.rechem.2021.100115

Bihdan O. A., Parchenko V. V. Fizyko-khimichni vlastyvosti S-pokhidnykh 5-(3-ftorfenil)-4-amino-1,2,4-triazol-3-tiolu // Aktual. рytannya farmats. med. nauky ta praktyky. – 2017. – T. 10, № 2. – S. 135–140. https://doi.org/10.14739/2409-2932.2017.2.10351

Bihdan O. A. Protymikrobna ta protyhrybkova aktyvnistʹ novykh ftorfenilvmisnykh 1,2,4-tryazoliv // Farmats. zhurn. – 2021. – T. 76, № 2. – S. 87–93. https://doi.org/10.32352/0367-3057.2.21.09

Martynyshyn V. P. Farmako-toksykolohichna otsinka ta likuvalʹna efektyvnistʹ preparatu naosnovi S-pokhidnoyi 1,2,4-triazolu za dermatomikoziv u sobak // Dys. ... d-ra filosofiyi. – Lʹviv, 2020. – 150 s.

Published
2022-06-29
How to Cite
Ogloblina, M. V., Bushueva, I. V., & Parchenko, V. V. (2022). Modern approaches to studying the antimicrobial and antifungal activities of new 1,2,4-triazole derivatives . Farmatsevtychnyi Zhurnal, (3), 94-102. https://doi.org/10.32352/0367-3057.3.22.11
Section
General and Clinical Pharmacology

Most read articles by the same author(s)