Study of the effect of dermatological phytogel on the ability of microorganisms to form a biofilm

Keywords: biofilms, dry Walnut leaf extract, dry nettle extract, dry thyme extract, gel

Abstract

The development of many chronic infections, including skin diseases, is caused by bacteria growing in the form of biofilms. Bacterial biofilms provide beneficial survival mechanisms that determine virulence, disease pathogenesis, or resistance of the pathogen to antibiotics. As shown by a large number of studies, biofilms play an important role in the pathogenesis of dermatological diseases, including atopic dermatitis. The close relationship between the microbial biofilm that colonizes the skin surface and the negative consequences for human health makes the skin microbiome an object of therapeutic intervention in dermatological pathogenic processes.

The work aims to study the effect of dermatological phytogel on the ability of microorganisms to form biofilms.

The objects of research were samples of gel containing dry walnut leaf extract with the sum of tannins in terms of gallic acid and dry matter 30 mg/100 g of gel, dry nettle extract with the sum of hydroxycinnamic acids in terms of chlorogenic acid, and dry matter 20 mg/100 g of gel, dry thyme extract with the sum of flavonoids in terms of rutin and dry matter 35 mg/100 g of gel both monocomponent and combined.

The study of the ability of individual plant components of phytogel samples N 1, N 2, N 3 and samples of combined phytogel N 4, N 5, and N 6 to influence biofilm formation have shown that the most pronounced decceleration of biofilms formation was registered in the gel sample with phytocomplex N 4 and was 19.7–20.7% to S. aureus, E. coli, P. aerugenosis and C. albicans respectively. The activity of the gel sample with phytocomplex N 4 was 1.3–1.4 times higher than that of monocomponent gel samples N 1, N 2, and N 3. When determining the ability of the test samples to destroy biofilms, it has been found that the gel sample with phytocomplex N 4 showed the greatest activity, which exceeded the specified properties of samples N 5 and N 6 by an average of 1.2 and 1.8 times. The activity of single-component gel samples N 1, N 2, and N 3 was lower in S. aureus, E. coli, P. aerugenosis and C. albicans biofilm destruction.

The conducted studies prove the feasibility of further study of the combined gel with the phyto complex № 4 containing dry walnut leaf extract with the sum of tannins in terms of gallic acid and dry matter 30 mg/100 g of gel, dry nettle extract with the sum of hydroxycinnamic acids in terms of chlorogenic acid, and dry matter 20 mg/100 g of gel, dry thyme extract with the sum of flavonoids in terms of rutin and dry matter 35 mg/100 g of gel.

References

Brandwein M., Steinberg D., Meshner S. Microbial biofilms and the human skin microbiome // NPJ biofilms and microbiomes. – 2016. – N 3. – P. 1–6. https://doi.org/10.1038/s41522-016-0004-z

Mansurova H. Sh., Maltsev S. V. «Shcho take bioplivka?» // MedicalNature. – 2013. – № 1. – S. 86–89.

Di Domenico E. G., Cavallo I., Capitanio B. еt al. Staphylococcus aureus and the Cutaneous Microbiota Biofilms in the Pathogenesis of Atopic Dermatitis // Microorganisms. – 2019. – N 7 (9). – P. 301–322. https://doi.org/10.3390/microorganisms7090301

Vrynchanu N. O., Bukhtiarova T. A. Problema rezystentnosti mikroorhanizmiv – vyklyk liudstvu // Farmats. zhurn. – 2021. – T. 76, № 1. – S. 57–71. https://doi.org/10.32352/0367-3057.1.21.07

Belizário J. E., Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches // Frontiers in microbiol. – 2015. – N 6. – P. 1050–1066. https://doi.org/10.3389/fmicb.2015.01050

Paller A. S., Kong H. H., Seed P. еt al. The microbiome in patients with atopic dermatitis. // J. Allergy Clin. Immunol. – 2019. – N 143 (1). – P. 26–35. https://doi.org/10.1016/j.jaci.2018.11.015

Allen H. B., Vaze N. D., Choi C. еt al. The presence and impact of biofilm-producing staphylococci in atopic dermatitis // JAMA Dermatol. – 2014. – N 150 (3). – P. 260–265. https://doi.org/10.1001/jamadermatol.2013.8627

Akiyama H., Hamada T., Huh W. K. еt al. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in skin lesions of bullous impetigo, atopic dermatitis and pemphigus foliaceus // The British J. Dermatol. – 2003. – N 148 (3). – P. 526–532. https://doi.org/10.1046/j.1365-2133.2003.05162.x

Katsuyama M., Ichikawa H., Ogawa S., Ikezawa Z. A novel method to control the balance of skin microflora. Part 1. Attack on biofilm of Staphylococcus aureus without antibiotics // J. Dermatol. Sci. – 2005. – N 38. – P. 197–205.

Hostiev V. V., Sydorenko S. V. Bakterialni bioplivky i infektsii // Zhurn. infektolohii. – 2010. – Т. 2, № 3. – S. 4–15.

Gonzalez T., Biagini Myers J. M., Herr A. B. еt al. Staphylococcal Biofilms in Atopic Dermatitis // Current allergy and asthma reports. – 2017. – N 17 (12). – P. 81–92. https://doi.org/10.1007/s11882-017-0750-x

Biofilms, Infection, and Antimicrobial Therapy / Ed. J. L. Pace et al. – Boca Raton: Taylor & Francis Group, 2006. – 495 p.

Donlan R. M., Costerton J. W. Biofilms: survival mechanisms of clinically relevant microorganisms // Clin. Microbiol. Rev. – 2002. – V. 15, N 2. – P. 167–193.

Pereira J. A., Oliveira I., Sousa A. еt al. Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. // Food Chem. Toxicol. – 2007. – N 45 (11). – Р. 2287–2295. https://doi.org/10.1016/j.fct.2007.06.004.

Dhouibi R., Affes H., Ben Salem M. еt al. Screening of pharmacological uses of Urtica dioica and others benefits // Biophys. Mol. Biol. – 2020. – N 150. – Р. 67–77. https://doi.org/10.1016/j.pbiomolbio.2019.05.008

Taghouti M., Martins-Gomes C., Félix L. M. еt al. Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species // Food Chem. – 2020. – N 30 (331). – Р. 127362. https://doi.org/10.1016/j.foodchem.2020.127362

Farha A. K., Yang Q.-Q., Kim G. еt al. Tannins as an alternative to antibiotics // Food Biosci. – 2020. – N 38. – Р. 100751. https://doi.org/10.1016/j.fbio.2020.100751

Contardi M., Lenzuni M., Fiorentini F. еt al. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review // Pharmaceutics. – 2021. – N 13 (7). – Р. 999. https://doi.org/10.3390/pharmaceutics13070999

Dias M. C., Pinto D. C. G. A., Silva A. M. S. Plant Flavonoids: Chemical Characteristics and Biological Activity // Molecules. – 2021. – N 26. – Р. 5377. https://doi.org/10.3390/molecules26175377

Vyvchennia spetsifichnoi aktivnosti protimikrobnikh likarskikh zasobiv. Metod. rekom. MOZ Ukrainy / Yu. L. Volianska, I. S. Hrytsenko, V. P. Shyrobokov ta in.; DFTs MOZ Ukrainy. – K., 2004. – 38 s.

Doklinichni doslidzhennia likarskikh zasobiv (metod. rekomendatsii) / Za red. O. V. Stefanova. – K.: Vyd. dim «Avitsena», 2001. – 527 s.

Published
2021-10-22
How to Cite
Myrhorod, V. S., Filimonova, N. I., Bashura, O. G., & Bobro, S. G. (2021). Study of the effect of dermatological phytogel on the ability of microorganisms to form a biofilm. Farmatsevtychnyi Zhurnal, (5), 68-76. https://doi.org/10.32352/0367-3057.5.21.07
Section
Pharmaceutical technology