Ammonium hexafluorosilicates as potential anti-caries agents: the problem of cation selection

Keywords: caries, ammonium hexafluorosilicates, H-bonds, physicochemical properties, biological activity


In the last decade, ammonium hexafluorosilicate (AHFS) and ammonium hexafluorosilicates with biologically active cations (AHBAC), which have certain advantages over traditional fluoride medicinal substances, have been actively studied as anti-caries agents. In particular, an important feature of the action of AHFS is its ability to cause prolonged occlusion of the dentinal tubules with a precipitate of calcium fluoride; when using AHBAС there is a possibility of strengthening the anti-caries activity of the substance due to the pharmacological potential of the cation.

The purpose of the review is to analyze the effects of the cation on the physicochemical properties and biological activity of ammonium hexafluorosilicates as potential anti-caries agents.

Research methods – bibliosemantic, content analysis.

It was drew the attention to the peculiarity of the AHBAC structure: salt structures are formed on the basis of systems of strong interionic H-bonds, mainly of the NH···F type, which have a significant effect on the properties of hexafluorosilicates in the crystalline state and their behavior in solutions. It was demonstrated the non-trivial nature of the change of solubility in water of AHBAC with heterocyclic and aromatic cations, which consists in the decrease of solubility with increasing number of hydrophilic fragments in the structure of cations. Adequate 2D QSPR models for interpretation and virtual screening of AHBAC water solubility have been constructed. Accounting for the effect of H-bonds on the solubility of AHBAC was detailed. It was assumed that the process of hydrolysis of AHBAC in aqueous solutions can be stimulated by elongation of the Si–F anion bonds due to the effects of H-bonds. It is shown that the thermal stability of AHBAC with pyridinium cations symbatically correlates with the number of strong and medium H-bonds in salt structures.

The action of the pharmacological effects of the cation on the biological activity of AHBAC is manifested in the form of an increase in the caries-prophylactic efficacy of AHBAC in comparison with a similar effect of AHFS. Attempts to establish a relationship between the anti-caries activity of AHBAC and a certain pharmacological action of the cation have led to mixed results. This obviously reflects the complex mechanism of the influence of the biological activity of the cation on the caries-prophylactic efficacy of hexafluorosilicates, which is not limited to any one, albeit dominant, type of activity.


Peres M. A., Macpherson L. M. D., Weyant R. J. et al. Oral diseases: a global public health challenge // Lancet. – 2019. – V. 394. – P. 249–260.

Reza Rezaie H., Beigi Rizi H., Rezaei Khamseh M., Öchsner A. Dental restorative materials. In: A review on dental materials. Advanced Structured Materials. Springer, Cham. – 2020. – V. 123. – P. 47–172.

Zhang J., Sardana D., Li K. Y. et al. Topical fluoride to prevent root caries: Systematic review with network meta-analysis // J. Dent. Res. – 2020.

Helmboldt V. O., Anisimov V. Yu. Amoniievi heksaftorosylikaty: novyi typ antykariiesnykh ahentiv // Farmats. zhurnal. – 2018. – № 5–6. – S. 48–69.

Gelmboldt V. O., Kravtsov V. Ch., Fonari M. S. Ammonium hexafluoridosilicates: Synthesis, structures, properties, applications // J. Fluorine Chem. – 2019. – V. 221, N 5. – P. 91–102.

Politz A. R., Scott L., Montz H. Ammonium hexafluorosilicate: A prospective alternative to silver diamine fluoride // Undergraduate Research Scholars Program. – 2020.

Rakov E. G. Khimiya i tekhnologiya neorganicheskikh ftoridov. – M.: MkhTI, 1990. – 162 s.

Zhao J., Yang D., Yang X.-J., Wu B. Anion coordination chemistry: From recognition to supramolecular assembly // Coord. Chem. Rev. – 2019. – V. 378. – P. 415–444.

Steiner T. The hydrogen bond in the solid state // Angew. Chem. Int. Ed. – 2002. – V. 41, N 1. – P. 48–76.<48::AID-ANIE48>3.0.CO;2-U

Braiek F., Elleuch S., Marzouki R., Graia M. Experimental and theoretical studies of the structural, vibrational and optical properties of a new hybrid material (C5H6N2Cl)2SiF6 // J. Mol. Structure. – 2021. – V. 1232. – P. 129990.

Jouyban Abolghasem. Handbook of solubility data for pharmaceuticals. – Boca Raton: CRS Press, 2010. – 538 p.

Gelmboldt V., Ognichenko L., Shyshkin I., Kuz’min V. QSPR models for water solubility of ammonium hexafluorosilicates: analysis of the effects of hydrogen bonds // Struct. Chem. – 2021. – V. 32, N 1. – P. 309–319.

Freire M. G., Neves C. M. S. S., Ventura S. P. M. et al. Solubility of non-aromatic ionic liquids in water and correlation using a QSPR approach // Fluid Phase Equilibria. – 2010. – V. 294. – P. 234–240.

Tantishaiyakul V. Prediction of the aqueous solubility of benzylamine salts using QSPR model // J. Pharm. Biomed. Analysis. – 2005. – V. 37. – P. 411–415.

Helmboldt V. O., Shyshkin I. O. Rozchynnist 2-, 3-, 4-karboksymetylpirydyniiu, 2-amino-4,6-dyhidroksypirymidyniiu ta oktenidynu heksaftorosylikativ // Farm. chasopys. – 2019. – № 1. – S. 5–10.

Urbansky Ed. T. Fate of fluorosilicate drinking water additives // Chem. Rev. –2002. – V. 102. – P. 2837–2854.

Pevec A., Demšar A. The variations in hydrogen bonding in hexafluorosilicate salts of protonated methyl substituted pyridines and tetramethylenediamine // J. Fluorine Chem. – 2008. – V. 129. – P. 707–712. 06.022

Suge T., Kawasaki A., Ishikawa K. et al. Effects of ammonium hexafluorosilicate concentration on dentin tubule occlusion and composition of the precipitate // Dent. Mater. – 2010. – V. 26, N 1. – P. 29–34.

Prodan O. V. Syntez, budova, fizyko-khimichni vlastyvosti i biolohichna aktyvnist «oniyevykh» heksaftorosylikativ: avtoref. dys. … kand. farm. nauk: 15.00.02 – farmatsevtychna khimiya ta farmakohnoziya. – Lviv, 2017. – 20 s.

Gelmboldt V. O., Shyshkin I. O., Anisimov V. Yu. et al. Bis(3-hydroxymethylpyridinium) hexafluorosilicate monohydrate as a new potential anticaries agent: Synthesis, crystal structure and pharmacological properties // J. Fluorine Chem. – 2020. – V. 235. – P. 109547.

Gelmboldt V. O., Shyshkin I. O., Fonari M. S., Kravtsov V. Ch. Synthesis, crystal structure and some properties of 4-hydroxymethylpyridinium hexafluorosilicate // J. Struct. Chem. – 2019. – V. 60, N 7. – P. 1150–1155.

Gelmboldt V. O., Anisimov V. Yu., Shyshkin I. O. et al. Synthesis, crystal structures, properties and caries prevention efficiency of 2-, 3-, 4-carboxymethylpyridinium hexafluorosilicates // J. Fluorine Chem. – 2018. – V. 205, N 1. – P. 15–21.

Kim Huynh-Ba, Dong M. W. Stability studies and testing of pharmaceuticals: An overview // LCGC North America. – 2020. – V. 38, N 6. – P. 325–336.

Stodghill S. P. Thermal analysis – A review of techniques and applications in the pharmaceutical sciences // Am. Pharm. Rev. – 2010. – V. 13, N 2. – P. 29–36.

Gelmboldt V. O. Effect of hydrogen bonding on properties of hexafluorosilicates with heterocyclic cations // Russ. J. Inorg. Chem. – 2014. – V. 59, N 2. – P. 79–83.

Borowiak-Resterna A., Szymanowski J., Voelkel A. Structure and nitrogen basicity of pyridine metal extractants // J. Radioanal. Nucl. Chem. – 1996. – V. 208, N 1. – P. 75–86.

Golovanov D. G., Lyssenko K. A., Antipin M. Yu. et al. Extremely short C–H···F contacts in the 1-methyl-3-propyl-imidazolium SiF6 – the reason for ionic “liquid” unexpected high melting point // CrystEngComm. – 2005. – V. 7. – P. 53–56.

Hummel M., Markiewicz M., Stolte S. et al. Phase-out-compliant fluorosurfactants: unique methimazolium derivatives including room temperature ionic liquids // Green Chem. – 2017. – V. 19. – P. 3225–3237.

Singh S. K., Savoy A. W. Ionic liquids synthesis and applications: An overview // J. Mol. Liquids. – 2020. – V. 297. – P. 112038.

Tian C., Nie W., Borzov M. V. Bis(1,3-dimethyl-1H-imidazolium) hexafluorosilicate: the second monoclinic polymorph // Acta Cryst. – 2013. – V. E69. – P. o1218-o1219.

Brsikyan N. A., Andriasyan L. H., Badalyan G. R. et al. Comparative morphology of dentinal tubules occlusion at the use of different desensitizing agents in experiment // New Armenian Med. J. – 2012. – V. 6, N 4. – P. 52–55.

Brsikyan N. A. Obturiruyushcheye vliyaniye geksaftorsilikatov nekotorykh aminokislot na dentinnyye kanal'tsy (eksperimental'noye issledovaniye): avtoref. dis. … kand. med. nauk: 14.00.12 – stomatologiya. – Yerevan, 2013. – 22 s.

Anysymov V. Yu., Shyshkyn Y. O., Helmboldt V. O., Levytskyi A. P. Karyesprofylaktycheskye y parodontoprotektornыe svoistva helei, soderzhashchykh heksaftorosylykatы pyrydynkarbonovыkh kyslot // Vestn. farmatsyy. – 2017. – № 4 (78). – S. 75–83.

Gelmboldt V. O., Lytvynchuk I. V., Shyshkin I. O. Ta in. Prohnoz biolohichnoi aktyvnosti i lipofilnosti deiakykh pokhidnykh pirydynu yak komponentiv antykariiesnykh ahentiv // Farmats. zhurn. – 2020. – T. 75, № 2. – S. 79-85.

Prystupa B. V., Shyshkin I. O., Rozhkovskyi Ya. V., Gelmboldt V. O. Otsinka protyzapalnoi aktyvnosti 2-. 3-, 4-karboksymetylpirydyniiu heksaftorosylikativ na karrahinanovoi modeli zapalennia // Farmats. zhur. – 2019. – № 4. – S. 82–87.

Miranda-Rius J., Brunet-Llobet L., Lahor-Soler E., Farré M. Salivary secretory disorders, inducing drugs, and clinical management // Int. J. Med. Sci. – 2015. – V. 12, N 10. – P. 811–824.

Herrera D., Escudero N., Pérez L. et al. Clinical and microbiological effects of the use of a cetylpyridinium chloride dentifrice and mouth rinse in orthodontic patients: a 3-month randomized clinical trial // Eur. J. Orthodontics. – 2018. – V. 40, N 5. – P. 465–474.

Anisimov V. Yu., Gelmboldt V. O., Polovko N. P., Strilets O. P. Udoskonalennya skladu kariyesprofilaktychnoho helyu // Ukr. biofarm. zhurn. – 2018. – № 2 (55). – S. 26–30.

Anisimov V. Yu., Shyshkin I. O., Levytskyi A. P., Gelmboldt V. O. Kariiesprofilaktychna i parodontoprotektorna diia oktenidynu heksaftorosylikatu u shchuriv, yaki otrymuvaly kariiesohennyi ratsion // Farmats. zhurn. – 2019. – № 3. – S. 86–95.

Assadian O. Octenidine dihydrochloride: chemical characteristics and antimicrobial properties // J. Wound Care. – 2016. – V. 25, N 3. – P. S3–S6.

How to Cite
Gelmboldt, V. O., & Lytvynchuk, I. V. (2021). Ammonium hexafluorosilicates as potential anti-caries agents: the problem of cation selection. Farmatsevtychnyi Zhurnal, (2), 11-26.
Synthesis and analysis of biologically active compounds