Ammonium hexafluorosilicates as potential anti-caries agents: the problem of cation selection

Keywords: caries, ammonium hexafluorosilicates, H-bonds, physicochemical properties, biological activity

Abstract

In the last decade, ammonium hexafluorosilicate (AHFS) and ammonium hexafluorosilicates with biologically active cations (AHBAC), which have certain advantages over traditional fluoride medicinal substances, have been actively studied as anti-caries agents. In particular, an important feature of the action of AHFS is its ability to cause prolonged occlusion of the dentinal tubules with a precipitate of calcium fluoride; when using AHBAС there is a possibility of strengthening the anti-caries activity of the substance due to the pharmacological potential of the cation.

The purpose of the review is to analyze the effects of the cation on the physicochemical properties and biological activity of ammonium hexafluorosilicates as potential anti-caries agents.

Research methods – bibliosemantic, content analysis.

It was drew the attention to the peculiarity of the AHBAC structure: salt structures are formed on the basis of systems of strong interionic H-bonds, mainly of the NH···F type, which have a significant effect on the properties of hexafluorosilicates in the crystalline state and their behavior in solutions. It was demonstrated the non-trivial nature of the change of solubility in water of AHBAC with heterocyclic and aromatic cations, which consists in the decrease of solubility with increasing number of hydrophilic fragments in the structure of cations. Adequate 2D QSPR models for interpretation and virtual screening of AHBAC water solubility have been constructed. Accounting for the effect of H-bonds on the solubility of AHBAC was detailed. It was assumed that the process of hydrolysis of AHBAC in aqueous solutions can be stimulated by elongation of the Si–F anion bonds due to the effects of H-bonds. It is shown that the thermal stability of AHBAC with pyridinium cations symbatically correlates with the number of strong and medium H-bonds in salt structures.

The action of the pharmacological effects of the cation on the biological activity of AHBAC is manifested in the form of an increase in the caries-prophylactic efficacy of AHBAC in comparison with a similar effect of AHFS. Attempts to establish a relationship between the anti-caries activity of AHBAC and a certain pharmacological action of the cation have led to mixed results. This obviously reflects the complex mechanism of the influence of the biological activity of the cation on the caries-prophylactic efficacy of hexafluorosilicates, which is not limited to any one, albeit dominant, type of activity.

References

Peres M. A., Macpherson L. M. D., Weyant R. J. et al. Oral diseases: a global public health challenge // Lancet. – 2019. – V. 394. – P. 249–260. https://doi.org/10.1016/S0140-6736(19)31146-8

Reza Rezaie H., Beigi Rizi H., Rezaei Khamseh M., Öchsner A. Dental restorative materials. In: A review on dental materials. Advanced Structured Materials. Springer, Cham. – 2020. – V. 123. – P. 47–172. https://doi.org/10.1007/978-3-030-48931-1_3

Zhang J., Sardana D., Li K. Y. et al. Topical fluoride to prevent root caries: Systematic review with network meta-analysis // J. Dent. Res. – 2020. https://doi.org/10.1177/0022034520906384

Helmboldt V. O., Anisimov V. Yu. Amoniievi heksaftorosylikaty: novyi typ antykariiesnykh ahentiv // Farmats. zhurnal. – 2018. – № 5–6. – S. 48–69. https://doi.org/10.32352/0367-3057.5-6.18.04

Gelmboldt V. O., Kravtsov V. Ch., Fonari M. S. Ammonium hexafluoridosilicates: Synthesis, structures, properties, applications // J. Fluorine Chem. – 2019. – V. 221, N 5. – P. 91–102. https://doi.org/10.1016/j.jfluchem.2019.04.005

Politz A. R., Scott L., Montz H. Ammonium hexafluorosilicate: A prospective alternative to silver diamine fluoride // Undergraduate Research Scholars Program. – 2020. https://hdl.handle.net/1969.1/189278

Rakov E. G. Khimiya i tekhnologiya neorganicheskikh ftoridov. – M.: MkhTI, 1990. – 162 s.

Zhao J., Yang D., Yang X.-J., Wu B. Anion coordination chemistry: From recognition to supramolecular assembly // Coord. Chem. Rev. – 2019. – V. 378. – P. 415–444. https://doi.org/10.1016/j.ccr.2018.01.002

Steiner T. The hydrogen bond in the solid state // Angew. Chem. Int. Ed. – 2002. – V. 41, N 1. – P. 48–76. https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

Braiek F., Elleuch S., Marzouki R., Graia M. Experimental and theoretical studies of the structural, vibrational and optical properties of a new hybrid material (C5H6N2Cl)2SiF6 // J. Mol. Structure. – 2021. – V. 1232. – P. 129990. https://doi.org/10.1016/j.molstruc.2021.129990

Jouyban Abolghasem. Handbook of solubility data for pharmaceuticals. – Boca Raton: CRS Press, 2010. – 538 p.

Gelmboldt V., Ognichenko L., Shyshkin I., Kuz’min V. QSPR models for water solubility of ammonium hexafluorosilicates: analysis of the effects of hydrogen bonds // Struct. Chem. – 2021. – V. 32, N 1. – P. 309–319. https://doi.org/10.1007/s11224-020-01652-3

Freire M. G., Neves C. M. S. S., Ventura S. P. M. et al. Solubility of non-aromatic ionic liquids in water and correlation using a QSPR approach // Fluid Phase Equilibria. – 2010. – V. 294. – P. 234–240. https://doi.org/10.1016/j.fluid.2009.12.035

Tantishaiyakul V. Prediction of the aqueous solubility of benzylamine salts using QSPR model // J. Pharm. Biomed. Analysis. – 2005. – V. 37. – P. 411–415. https://doi.org/10.1016/j.jpba.2004.11.005

Helmboldt V. O., Shyshkin I. O. Rozchynnist 2-, 3-, 4-karboksymetylpirydyniiu, 2-amino-4,6-dyhidroksypirymidyniiu ta oktenidynu heksaftorosylikativ // Farm. chasopys. – 2019. – № 1. – S. 5–10. https://doi.org/10.11603/2312-0967.2019.1.9877

Urbansky Ed. T. Fate of fluorosilicate drinking water additives // Chem. Rev. –2002. – V. 102. – P. 2837–2854. https://doi.org/10.1021/cr020403c

Pevec A., Demšar A. The variations in hydrogen bonding in hexafluorosilicate salts of protonated methyl substituted pyridines and tetramethylenediamine // J. Fluorine Chem. – 2008. – V. 129. – P. 707–712. https://doi.org/10.1016/j.jfluchem.2008. 06.022

Suge T., Kawasaki A., Ishikawa K. et al. Effects of ammonium hexafluorosilicate concentration on dentin tubule occlusion and composition of the precipitate // Dent. Mater. – 2010. – V. 26, N 1. – P. 29–34. https://doi.org/10.1016/j.dental.2009.08.011

Prodan O. V. Syntez, budova, fizyko-khimichni vlastyvosti i biolohichna aktyvnist «oniyevykh» heksaftorosylikativ: avtoref. dys. … kand. farm. nauk: 15.00.02 – farmatsevtychna khimiya ta farmakohnoziya. – Lviv, 2017. – 20 s.

Gelmboldt V. O., Shyshkin I. O., Anisimov V. Yu. et al. Bis(3-hydroxymethylpyridinium) hexafluorosilicate monohydrate as a new potential anticaries agent: Synthesis, crystal structure and pharmacological properties // J. Fluorine Chem. – 2020. – V. 235. – P. 109547. https://doi.org/10.1016/j.jfluchem.2020.109547

Gelmboldt V. O., Shyshkin I. O., Fonari M. S., Kravtsov V. Ch. Synthesis, crystal structure and some properties of 4-hydroxymethylpyridinium hexafluorosilicate // J. Struct. Chem. – 2019. – V. 60, N 7. – P. 1150–1155. https://doi.org/10.1134/S0022476619070175

Gelmboldt V. O., Anisimov V. Yu., Shyshkin I. O. et al. Synthesis, crystal structures, properties and caries prevention efficiency of 2-, 3-, 4-carboxymethylpyridinium hexafluorosilicates // J. Fluorine Chem. – 2018. – V. 205, N 1. – P. 15–21. https://doi.org/10.1016/j.jfluchem.2017.11.004

Kim Huynh-Ba, Dong M. W. Stability studies and testing of pharmaceuticals: An overview // LCGC North America. – 2020. – V. 38, N 6. – P. 325–336.

Stodghill S. P. Thermal analysis – A review of techniques and applications in the pharmaceutical sciences // Am. Pharm. Rev. – 2010. – V. 13, N 2. – P. 29–36.

Gelmboldt V. O. Effect of hydrogen bonding on properties of hexafluorosilicates with heterocyclic cations // Russ. J. Inorg. Chem. – 2014. – V. 59, N 2. – P. 79–83. https://doi.org/10.1134/S0036023614020077

Borowiak-Resterna A., Szymanowski J., Voelkel A. Structure and nitrogen basicity of pyridine metal extractants // J. Radioanal. Nucl. Chem. – 1996. – V. 208, N 1. – P. 75–86. https://doi.org/10.1007/BF02039750

Golovanov D. G., Lyssenko K. A., Antipin M. Yu. et al. Extremely short C–H···F contacts in the 1-methyl-3-propyl-imidazolium SiF6 – the reason for ionic “liquid” unexpected high melting point // CrystEngComm. – 2005. – V. 7. – P. 53–56. https://doi.org/10.1039/B415742G

Hummel M., Markiewicz M., Stolte S. et al. Phase-out-compliant fluorosurfactants: unique methimazolium derivatives including room temperature ionic liquids // Green Chem. – 2017. – V. 19. – P. 3225–3237. https://doi.org/10.1039/C7GC00571G

Singh S. K., Savoy A. W. Ionic liquids synthesis and applications: An overview // J. Mol. Liquids. – 2020. – V. 297. – P. 112038. https://doi.org/10.1016/j.molliq.2019.112038

Tian C., Nie W., Borzov M. V. Bis(1,3-dimethyl-1H-imidazolium) hexafluorosilicate: the second monoclinic polymorph // Acta Cryst. – 2013. – V. E69. – P. o1218-o1219. https://doi.org/10.1107/S1600536813018230

Brsikyan N. A., Andriasyan L. H., Badalyan G. R. et al. Comparative morphology of dentinal tubules occlusion at the use of different desensitizing agents in experiment // New Armenian Med. J. – 2012. – V. 6, N 4. – P. 52–55.

Brsikyan N. A. Obturiruyushcheye vliyaniye geksaftorsilikatov nekotorykh aminokislot na dentinnyye kanal'tsy (eksperimental'noye issledovaniye): avtoref. dis. … kand. med. nauk: 14.00.12 – stomatologiya. – Yerevan, 2013. – 22 s.

Anysymov V. Yu., Shyshkyn Y. O., Helmboldt V. O., Levytskyi A. P. Karyesprofylaktycheskye y parodontoprotektornыe svoistva helei, soderzhashchykh heksaftorosylykatы pyrydynkarbonovыkh kyslot // Vestn. farmatsyy. – 2017. – № 4 (78). – S. 75–83.

Gelmboldt V. O., Lytvynchuk I. V., Shyshkin I. O. Ta in. Prohnoz biolohichnoi aktyvnosti i lipofilnosti deiakykh pokhidnykh pirydynu yak komponentiv antykariiesnykh ahentiv // Farmats. zhurn. – 2020. – T. 75, № 2. – S. 79-85.

Prystupa B. V., Shyshkin I. O., Rozhkovskyi Ya. V., Gelmboldt V. O. Otsinka protyzapalnoi aktyvnosti 2-. 3-, 4-karboksymetylpirydyniiu heksaftorosylikativ na karrahinanovoi modeli zapalennia // Farmats. zhur. – 2019. – № 4. – S. 82–87. https://doi.org/10.32352/0367-3057.4.19.09

Miranda-Rius J., Brunet-Llobet L., Lahor-Soler E., Farré M. Salivary secretory disorders, inducing drugs, and clinical management // Int. J. Med. Sci. – 2015. – V. 12, N 10. – P. 811–824. https://doi.org/10.7150/ijms.12912

Herrera D., Escudero N., Pérez L. et al. Clinical and microbiological effects of the use of a cetylpyridinium chloride dentifrice and mouth rinse in orthodontic patients: a 3-month randomized clinical trial // Eur. J. Orthodontics. – 2018. – V. 40, N 5. – P. 465–474. https://doi.org/10.1093/ejo/cjx096

Anisimov V. Yu., Gelmboldt V. O., Polovko N. P., Strilets O. P. Udoskonalennya skladu kariyesprofilaktychnoho helyu // Ukr. biofarm. zhurn. – 2018. – № 2 (55). – S. 26–30. https://doi.org/10.24959/ubphj.18.166

Anisimov V. Yu., Shyshkin I. O., Levytskyi A. P., Gelmboldt V. O. Kariiesprofilaktychna i parodontoprotektorna diia oktenidynu heksaftorosylikatu u shchuriv, yaki otrymuvaly kariiesohennyi ratsion // Farmats. zhurn. – 2019. – № 3. – S. 86–95. https://doi.org/10.32352/0367-3057.3.19.10

Assadian O. Octenidine dihydrochloride: chemical characteristics and antimicrobial properties // J. Wound Care. – 2016. – V. 25, N 3. – P. S3–S6. https://doi.org/10.12968/jowc.2016.25.Sup3.S3

Published
2021-04-22
How to Cite
Gelmboldt, V. O., & Lytvynchuk, I. V. (2021). Ammonium hexafluorosilicates as potential anti-caries agents: the problem of cation selection. Farmatsevtychnyi Zhurnal, (2), 11-26. https://doi.org/10.32352/0367-3057.2.21.02
Section
Synthesis and analysis of biologically active compounds