The problem of resistance of microorganisms ‒ challenge to humanity

Keywords: resistance of microorganisms, drugs, antibacterial action, microorganisms

Abstract

One of the XXI century public health urgent problems is the antibiotic therapy effectiveness decrease as a result of microorganisms resistant strains emergence and spread.

The aim of review is the antibiotic resistance causes and medicines effects on the formation of microorganisms resistance to antibiotics modern data analysis.

Сontent analysis, bibliosemantic, scientometric and systemic methods was used in the work.

Our analysis showed that at present the question of the non-antimicrobial medicines role in the antibiotic resistance formation remains open. Medicines of different pharmacotherapeutic groups are able to demonstrate antimicrobial activity, realizing both by microorganisms inhibition and their growth stimulation. The problem of such medicines influence on the antibiotics specific activity needs additional investigation in order to possible antagonistic effects identification. Special attention deserves the question of non-antimicrobial medicines subinhibitory concentrations accumulation in the environment in view of their ability to stimulate biofilms formation.

Antibiotic resistance is a global problem; in order to its spread repression and antimicrobial therapy effectiveness preservation, it is necessary to establish all its possible causes and contributing factors. Non-antimicrobial medicines role in the resistance formation detection is one of the ways to control these processes. Such complex measures allow preserving the existing antimicrobial preparations effectiveness for the future generations.

References

Taneja N., Sethi S., Kumar Tahlan A., Kumar Y. Introductory Chapter: Stepping into the Post-Antibiotic Era - Challenges and Solutions. Antimicrobial Resistance – A Global Threat. - 2019. https://doi.org/10.5772/intechopen.84486

Li B., Webster T. J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections // J. Orthop. Res. - 2018. - V. 36, N 1. - P. 22-32. https://doi.org/10.1002/jor.23656

Ventola C. L. The antibiotic resistance crisis: part 1: causes and threats // P T. - 2015. - V. 40, N 4. - Р. 277-283.

Landecker H. Antibiotic Resistance and the Biology of History // Body Soc. - 2016. - V. 22, N 4. - Р. 19–52. https://doi.org/10.1177/1357034X14561341

Bernardo Ribeiro da Cunha, Luís P. Fonseca, Cecília R. C. Calado. Antibiotic Discovery: Where Have We Come from, Where Do We Go? // Antibiotics. - 2019. - V. 8, N 2. – P. 45. https://doi.org/10.3390/antibiotics8020045

Davies J. Davies D. Origins and Evolution of Antibiotic Resistance // Microbiol. Mol. Biol. Rev. - 2010. - V. 74, N 3. - Р. 417–433. https://doi.org/10.1128/MMBR.00016-10

Lakhundi S., Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology // Clin. Microbiol. Rev. - 2018. - V. 31, N 4. - P. e00020-18. https://doi.org/ 10.1128/CMR.00020-18

Christaki E., Marcou M., Tofarides A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence // J. Molecular Evolution. - 2020. – V. 88, N 1. - P. 26-40. https://doi.org/10.1007/s00239-019-09914-3 10

Perry J., Waglechner N., Wright G. The Prehistory of Antibiotic Resistance // Cold Spring Harb Perspect Med. - 2016. - V. 1, N 6. - pii: a025197. https://doi.org/10.1101/cshperspect.a025197

Fair R. J., Tor Y. Antibiotics and bacterial resistance in the 21st century // Perspect Medicin Chem. - 2014. - V. 6. - P. 25-64. https://doi.org/10.4137/PMC.S14459

Prestinaci F., Pezzotti P., Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon // Pathog. Glob. Health. - 2015. - V. 109, N 7. - Р. 309-318. https://doi.org/10.1179/2047773215Y.0000000030

Podolsky S. H. The evolving response to antibiotic resistance (1945–2018) // Palgrave Communications. - 2018. - V. 4. - P. 124. https://doi.org/10.1057/s41599-018-x

Bauer M. A., Kainz K., Didac Carmona-Gutierrez D., Madeo F. Microbial wars: Competition in ecological niches and within the microbiome // Microbial. Cell. - 2018. - V. 5, N 5. - Р. 215-219. https://doi.org/10.15698/mic2018.05.628

Vasilchenko A. S., Rogozhin E. A. Sub-Inhibitory Effects of Antimicrobial Peptides // Front. Microbiol. - 2019. - V. 10. - P. 1160. https://doi.org/10.3389/fmicb.2019.01160

Grenni P., Ancona V., Caracciolo A. B. Ecological effects of antibiotics on natural ecosystems: A review // Microchemical J. - 2018. - V. 136. - H. 25-39. https://doi.org/10.1016/j.microc.2017.02.006

Ayukekbong J. А., Ntemgwa M., Atabe А. N. The threat of antimicrobial resistance in developing countries: causes and control strategies // Antimicrobial Resist. Infect. Control. - 2017. - V. 6, N 47 - Р. 1-8.

Rather I. A., Kim B.-C., Bajpai V. K., Park Y-H. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention // Saudi. J. Biol. Sci. - 2017. - V. 24, N 4. - P. 808-812. https://doi.org/10.1016/j.sjbs.2017.01.004

Haque M. Аntimicrobial use, prescribing, and resistance in selected ten selected developing countries: a brief overview // Asian. J. Pharm. Clin. Res. - 2017. - V. 10, N 8.- Р. 37-45

Aslam B., Wang W., Arshad M. I. et al. Antibiotic resistance: a rundown of a global crisis // Infect. Drug Resist. - 2018. - V. 11. - P. 1645-1658. https://doi.org/10.2147/IDR.S173867

O’Hagan A., Garlington A. Counterfeit drugs and the online pharmaceutical trade, a threat to public safety // Forensic Res. Criminol. Int. J. - 2018. - V. 6, N 3. - P. 151-158. https://doi.org/10.15406/frcij.2018.06.00200

Kelesidis T., Falagas M. E. Substandard Counterfeit Antimicrobial Drugs // Clin. Microbiol. Rev. - 2015.- V. 28, N 2. - Р. 443-464. https://doi.org/10.1128/CMR.00072-14

Bengtsson-Palme J., Kristiansson E., Larsson D. G. J. Environmental factors influencing the development and spread of antibiotic resistance // FEMS Microbiol Rev. - 2018. - V. 42, N 1 - fux053. https://doi.org/10.1093/femsre/fux053

Scornec H., Bellanger X., Guilloteau H. et al. Inducibility of Tn916 conjugative transfer in Enterococcus faecalis by subinhibitory concentrations of ribosome-targeting antibiotic // J. Antimicrob. Chemother. - 2017.- V. 72, N 10. - P. 2722-2728. https://doi.org/10.1093/jac/dkx202

Jutkina J., Marathe N. P., Flach C.-F., Larsson D. G. J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations // Science of the Total Environment. - 2018. - V. 616-617. - P. 172-178. https://doi.org/10.1016/j.scitotenv.2017.10.312

Blázquez J., Rodríguez-Beltrán J., Matic I. Antibiotic-Induced Genetic Variation: How It Arises and How It Can Be Prevented // Annual Rev. Microbiol. - 2018. - V. 72, N 1.- Р. 209-230. https://doi.org/10.1146/annurev-micro-090817-062139

Xiong L., Liao D., Lu X. et al. Proteomic analysis reveals that a global response is induced by subinhibitory concentrations of ampicillin // Bioengineered. - 2017. - V. 8, N 6. - Р. 732-741. https://doi.org/10.1080/21655979.2017.1373532

Taylor Р., Reeder R. Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors // CABI Agriculture and Bioscience. - 2020. - V. 1, N 1. https://doi.org/10.1186/s43170-020-00001-y

HaoVan Т. Т. Yidana Z., Smooker Р. M., Coloe P. J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses // J. Global Antimicrobial Resistance. - 2020. -V. 20. - P.170-177.

Singer А. С., Shaw H., Rhodes V., Hart A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators // Front. Microbiol. - 2016. -V. 7. - P. 1728. https://doi.org/10.3389/fmicb.2016.01728

Cycoń M., Mrozik A., Piotrowska-Seget Z. Antibiotics in the Soil Environment - Degradation and Their Impact on Microbial Activity and Diversity // Front Microbiol. - 2019.- V. 10. - P. 338. https://doi.org/10.3389/fmicb.2019.00338

Tsymbalista O. L. Problema rezystentnosti mikroorhanizmiv do antybiotykiv (lektsiia) // Sovremennaya pediatriya. - 2017. - Т. 2, № 82. - S. 52-57.

Armalytė J., Skerniškytė J., Bakienė E. et al. Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems // Front Microbiol. - 2019. - V. 10. - P. 892. https://doi.org/10.3389/fmicb.2019.00892

Azevedo M.-M., Faria-Ramos I., Cruz L. C. et al. Genesis of Azole Antifungal Resistance from Agriculture to Clinical Settings // J. Agricultural and Food Chemistry. - 2015. - V. 63, N 34. - Р. 7463-7468. https://doi.org/10.1021/acs.jafc.5b02728

Myung K., Klittich C. J. R. Can agricultural fungicides accelerate the Can agricultural fungicides accelerate the discovery of human antifungal drugs? // Drug Discovery Today. - 2015. -V. 20, N 1. - P. 7-10. https://doi.org/10.1016/j.drudis.2014.08.010

Оlaniyan L. W. B., Mkwetshana N., Okoh A. I. Triclosan in water, implications for human and environmental health // Springer Plus. - 2016. - V. 5, N 1. - P. 1639. https://doi.org/10.1186/s40064-016-3287-x

Webber M. A., Buckner M. M. C., Redgrave L. S. et al. Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan // J. Antimicrob. Chemotherapy. - 2017. - V. 72, N 10. - Р. 2755-2763. https://doi.org/10.1093/jac/dkx201

Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use. Final rule // Fed Regist. - 2016. - V. 81, N 172. - P. 61106-61130.

Kampf G. Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species // Antibiotics (Basel). - 2018. - V. 7, N 4. - P. 110. https://doi.org/10.3390/antibiotics7040110

Taheri N., Ardebili A., Amouzandeh-Nobaveh A. E. et al. Frequency of Antiseptic Resistance Among Staphylococcus aureus and Coagulase-Negative Staphylococci Isolated From a University Hospital in Central Iran // Oman. Med. J. - 2016. - V. 31, N 6. - Р. 426-432. https://doi.org/10.5001/omj.2016.86

Founou L. L., Founou R. C., Essack S. Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective // Front Microbiol. - 2016. - V. 7. - P. 1881. https://doi.org/10.3389/fmicb.2016.01881

Bengtsson-Palme J., Angelin M., Huss M. et al. The Human Gut Microbiome as a Transporter of Antibiotic Resistance Genes between Continents // Antimicrob. Agents Chemother. - 2015. - V. 59, N 10. - Р. 6551–6560.

Ranieri M. R., Whitchurch C. B., Burrows L. L. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials // Current Opinion in Microbiology. - 2018. - V. 45. - Р. 164-169. https://doi.org/10.1016/j.mib.2018.07.006

Lagadinou M., Onisor M. O., Rigas A. et al. Antimicrobial Properties on Non-Antibiotic Drugs in the Era of Increased Bacterial Resistance // Antibiotics (Basel). - 2020. - V. 9, N 3. - pii: E107. https://doi.org/10.3390/antibiotics9030107

Pereira S. G., Domingues V. S., Theriága J. et al. Non-Antimicrobial Drugs: Etodolac as a Possible Antimicrobial or Adjuvant Agent Against ESKAPE Pathogens // Open Microbiol. J. - 2018. - N 12. - Р. 288-296. https://doi.org/10.2174/1874285801812010288

Аbdul-Hussein Z. R. Antibacterial effect of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) // Basrah J. Science (В). - 2014. - V. 32, N 2. - Р. 166-181.

Zimmermann P., Curtis N. Antimicrobial effects of antipyretics // Antimicrob. Agents Chemother. - 2017. - V. 61. - pii: e02268-16. https://doi.org/10.1128/AAC.02268-16

Verma T., Bhaskarla C., Sadhir I. et al. Non-steroidal anti-inflammatory drugs, acetaminophen and ibuprofen, induce phenotypic antibiotic resistance in Escherichia coli: roles of marA and acr // BFEMS Microbiology Letters. - 2018. - V. 365, N 22. https://doi.org/10.1093/femsle/fny251

Serafin M. B., Hörne R. Drug repositioning, a new alternative in infectious diseases // Braz. J. Infect. Dis. - 2018. - V. 22, N 3. http://dx.doi.org/10.1016/j.bjid.2018.05.007

Razavi B., FazlyBazzaz B. A review and new insights to antimicrobial action of local anesthetics // Eur. J. Clin. Microbiol. Infect. Dis. - 2019. - V. 38, N 6. - Р. 991-1002. https://doi.org/10.1007/s10096-018-03460-4

El-Banna T., Sonbol F. І. Modulation of antibiotic efficacy against Klebsiella pneumoniae by antihistaminic drugs // J. Med. Microbiol. Diagnosis. - 2016. - V. 5, N 2. - P. 1-13. https://doi.org/10.4172/2161-0703.1000225

Varga В., Csonka A., Molnár J. et al. Possible Biological and Clinical Applications of Phenothiazines // Anticancer Res. - 2017. - V. 37, N 11. - Р. 5983-5993.

Karine de Sousa A., Rocha J. E., Gonçalves de Souza T. et al. New roles of fluoxetine in pharmacology: Antibacterial effect and modulation of antibiotic activity // Microbial. Pathogenesis. - 2018. - V. 123. - P. 368-371 https://doi.org/10.1016/j.micpath.2018.07.040

Macedo D., Filho A. J. M. C., Soares de Sousa C. N. et al. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness // J. Affective Disorders. - 2017. - V. 208. - P. 22-32. https://doi.org/10.1016/j.jad.2016.09.012

Laccellotti P. Antibacterial activity of Ticagrelor in conventional antiplatelet dosages against antibiotic resistant gram positive bacteria // JAMA Cardiol. - 2019. - V. 4, N 6. - Р. 596-599. https://doi.org/10.1001/jamacardio.2019.1189

Ko H. H. T., Lareu R. R., Brett R. R., Dix B. R., Hughes R. D. In vitro antibacterial effects of statins against bacterial pathogens causing skin infections // European J. Clinical Microbiol. Infect. Diseases. - 2018. - V. 37, N 6. - Р. 1125-1135 https://doi.org/10.1007/s10096-018-3227-5

Graziano Т. S., Cuzzullin M. C., Franco G. C. et al. Statins and Antimicrobial Effects: Simvastatin as a Potential Drug against Staphylococcus aureus Biofilm // PLoS One. - 2015. - V. 10, N 5. - P. e0128098. https://doi.org/10.1371/journal.pone.0128098

Jang J., Kim R., Woo M. et al. Efflux attenuates the antibacterial activity of Q203 in Mycobacterium tuberculosis // Antimicrob Agents Chemother. - 2017. - V. 61, N 7. - P. e02637-16. https://doi.org/10.1128/AAC.02637-16

Chan E. W. L., Yee Z. Y., Raja I., Yap J. K. Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus // J. Glob. Antimicrob. Resist. - 2017. - V. 10. - P. 70-74. https://doi.org/10.1016/j.jgar.2017.03.012

Hadera M., Mehari S., Basha S. et al. Study on Antimicrobial Potential of Selected Non-antibiotics and its Interaction with Conventional Antibiotics // UK J. Pharmaceutical and Biosciences. - 2018. - V. 6, N 1. - P. 01-07.

Laudy A. E., Mrowka A., Krajewska J., Tyski S. The Influence of Efflux Pump Inhibitors on the Activity of Non-Antibiotic NSAIDS against Gram-Negative Rods // PLOS ONE. - 2016. - V. 11, N 1. - P. e0147131. https://doi.org/10.1371/journal.pone.0147131

Blanco P., Hernando-Amado S., Reales-Calderon J. A. et al. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants // Microorganisms. - 2016. - V. 4, N 1. - P. 14. https://doi.org/10.3390/microorganisms4010014

Bandara M., Sankaridurg P., Zhu H. et al. Effect of Salicylic Acid on the Membrane Proteome and Virulence of Pseudomonas aeruginosa // IOVS. - 2016. - V. 57, N 3. - Р. 1213-1220.

Kalaycı S., Demirci S., Sahin F. Antimicrobial Properties of Various Psychotropic Drugs Against Broad Range Microorganisms // Current Psychopharmacol. - 2014. - V. 3, N 3. - Р. 195–202. https://doi.org/202. 10.2174/2211556004666150520230121

McGovern A. S., Hamlin A. S., Winter G. A review of the antimicrobial side of antidepressants and its putative implications on the gut // Aust. N. Z. J. Psychiatry. - 2019. - V. 53, N 12. - Р. 1151-1166.

Lukic I., Getselter D., Ziv O. et al. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior // Translational Psychiatry. - 2019 .- V. 9, N 1. P. 133. https://doi.org/10.1038/s41398-019-0466-x

Chamberlain M., Koutsogiannaki S., Schaefers M. et al. The Differential Effects of Anesthetics on Bacterial Behaviors // PLоS ONE. - 2017. – V. 12, N 1. - P. e0170089. https://doi.org/10.1371/journal.pone.0170089

Published
2021-02-17
How to Cite
VrynchanuN. О., & Bukhtiarova, T. A. (2021). The problem of resistance of microorganisms ‒ challenge to humanity . Farmatsevtychnyi Zhurnal, (1), 57-71. https://doi.org/10.32352/0367-3057.1.21.07
Section
Pharmacology